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IRREVERSIBLE THERMODYNAMICS AND DERIVATION OF A SYSTEM
OF DIFFERENTTAL EQUATIONS OF MOLECULAR TRANSFER

P. V. Tsoy
ABSTRACT

Derivation of a system of differential equations of
molecular transfer for the case of n interrelated fluxes
of generalized charges are presented. The derivation is
carried out on the basis of linear laws of irreversible
thermodynamics and the law of conservation of matter.
Methods of solving boundary-value problems for this sys-
tem of equations are discussed.

The modern theory of transfer of generalized charges within a /318%
capillary-porous medium makes extensive use of the methods of the therwo-
dynamics of irreversible processes.

As is well known, the basis for the thermodynamics of irreversible
processes consists of two principles: the linear law and the Onsager
reciprocal relation. A great number of irreversible processes are known
whose regularities are expressed phenomenologically by the linear relations
between cause and effect. According to the linear law, the rate I (result)
of approach of a systemto a state of equilibrium is proportional to the
thermodynamic impetus (force) X (cause), which in turn can be expressed by the
potential gradient. For example, the law of heat conductivity concerning the
proportionality of the heat flux to the temperature gradient ( I = -\grad T),
the law of diffusion and the proportionality of a flux of a component of
the mixture to the gradient of the concentration (1, = —}mgrad U), Ohm's law

on the proportionality of current density to the potential gradient
(I = -ogradoy), etc.

Numbers given in margin indicate pagination in original foreign text.
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These linear laws served as a basis for derivingthe corresponding differ-
ential equations (heat conductivity, diffusion, electrical conductivity, etc.).

In conltrast to the classical concept, the phenomena of heat transfer,
mass of bonded matter, electrical charges, etc., on the basis of which the cor-
responding differential equations were derived, now are being reconsidered
using the thermodynamics of irreversible processes.

Whereas earlier in the study of heat transfer, electricity and mass of
bonded matter it was customary to consider independent linear transfer equa-
tions, now the initial transfer equations consist of the system of Onsager lin-
ear equations, in which any form of transfer is determined by the influence of
the direct effect and superposed transfer phenomena. Mathematically the super-
position effects are described by additional terms in the expression of the
principal transfer law (direct effect). These linear Onsager equations lead to
a system of interrelated differential equations of molecular transfer--to a
system of differential equations in partial derivatives of the parabolic type
relative to the potential fields of distribution of temperature, /319
electricity, mass of bonded matter, etc.

According to the linear law, the flux Ij caused by the effect of n gen-

eralized forces Xk(k =1,2,...,n), is proportional to these forces

L= NVLXe G 120 (1)
anownd
k=
The values L;, are called the phenomenological (kinetic) Onsager co-

efficients. The diagonal coefficients Lk show the intensity of transfer of
the k-th generalized charge under the influence of the similar force X, - The
coefficients L;y» when i #+ k, are called the drag coefficients and are relat-
ed to the superposed phenomena.

The Onsager reciprocal relation establishes that with an appropriate se-
lection of the fluxes I; and Xi the matrix formed from the kinetic coefficients
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is symmetrical, that is,
Lyo= Ly 3)

This relation is the result of microscopic reversibility.
For example, for the phenomenon of joint occurrence of nonisothermal dif-

fusion and heat conductivity within a porous medium we may write

I LoX, = LoaX,,
‘ (4)

[y = Ly X, - /“.‘.:X‘.'v‘

where I1 is the energy flux (heat); 12 is the flux of the mass of bonded matter.
Ly and Ly establish the relationship between the superposed phenomena (ther-
mal diffusion, that is, the temperature gradient, causes the transfer of matter
and diffusive heat conductivity, that is, the gradient of the concentration
causes heat transfer). Ljp is proportional to the Soret coefficient and Lyj to
the Dufeau coefficient.

The equality of the nondiagonal kinetic coefficients Ly, = Lp; means there
is a symmetry between the influence of the force of diffusion on the heat flux
and the influence of the thermal force on the flux of matter. For clarification

of the quantitative aspect of the reciprocal influence of different fluxes we
will differentiate the linear equations of system (4)

al, . Ola » '
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On the basis of reciprocal relation (3) we obtain

01,/0X, = 0L, 0X, -, (6)

anit
The increment of the energy flux (heat), related to ajincrement of the
kinetic force Xy (gradient of the function of distribution of mass of the bonded



matter), is equal to the increment of the flux of matter, related to a unit in-
crement of kinetic force X; (temperature gradient).

For derivation of a system of differential equations of molecular transfer
we will make some assumptions concerning the model of the thermodynamic system
in which the transfer process occurs. We will assume that within an isotropic
capillary-porous body (conductor) there are n generalized charges. These gen-
eralized charges experience transfer under the influence of n generalized forces

Xy, Xy,...,X , whose potentials are U;(x roeo 0, Ul moz b,

...... Uy, 20,

Thus, the thermodynamic system is essentially heterogeneous and is assumed to be
continuocus, that is, any elementary volume of the conductor is filled with all
n components of generalized charges.

We will write the generalized forces Xp, Xp,...,X, through the gradients of
the corresponding potentials Xe=—VU,~—grail',. Under these conditions the

linear equations (l) are written in the form

/,‘.=-—(LMVU1 "}"Lkz\"U‘."*_"":"LkuVUR)\ (7)
(k=12 ...n). . \

Within the conducting body (conductor) we will consider the elementary
volume V, bounded by surface S. We will break down surface S into m arbitrary
parts. Assume ASi is the value of the area of the i-th part of surface S; then

AEp; = Ik(p'i,t)AS; is the quantity of the k-th generalized charge, paséing

through the surface AS; in a unit time, (Ly), ;::ﬂlﬁguz_\ﬂlkng)ASg
e :

il '

is the approximate value of the total quantity of the generalizgdmcharge passing

through the entire surface S in a unit time t. Hence E = lim $)
kT U
h<M~‘)AS§a:§V L, OdS\ is the quantity of the generalized charge of the k-th

S )
flux, passing through control surface S in a unit time. Here the integral ap-
plies for the entire surface S of volume V.

In the absence of sources of formation of a k-th generalized charge with-
in volume V, the flux through surface S causes a change of the content of the
charge by the value cer Jl
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On the basis of the law of conservation of matter the change of the con-

tent of the charge in volume V is equal to its loss through surface S, bounding
the given volume V, that is,
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Substituting the value Ik(p',t) using formula (7), we obtain
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(4% ) by

}: L grad l l ds. (9
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Using the M.V, Ostrogradskiy formula, the double integral for surface S is
expressed by the triple integral for volume V
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Equation (9) assumes the form
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Since equation (11) was obtained for any arbitrary volume V, it follows that

0T TSN
vC, _‘at— = div [ Y L, grad Uﬂ.
N tz=1 _l (12)

System (12) is a system of differential transfer equations in the presence
of n interrelated fluxes of generalized charges.



If Lki are not dependent on the coordinates of a point in space, system

(12) is considerably simplified

(13)
where
VU =div{gradU), a2, = L,/vC, > 0.

Assume that within the conductor there are operative sources of formation
of generalized charges, whose specific powers are Wi(x,y, z,t), Wy(x,y,z,t),...,

Wyp(x,y,2z,t); then the system of equations (13) assumes the form
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e = WL G
Here, as before, the Onsager reciprocal relations should be correct
yCiiy=vCul - (15)

The system of differential equations of molecular transFer (14), together
with the Onsager reciprocal relations (15), mathematically describe the differ-
ential law of change of the potential functions of the distribution of general-
ized charges, taking into account the reciprocal influence of the fluxes. /322

Analytical solutions of boundary-value problews for different initial
boundary conditions for a system of differential equationsof the parabolic type
(14) are of definite interest in general transfer theory. The methods of solu-
tion of boundary-value problewms for system (14) and analysis of these solutionms,
written in criterial form, lead to new approaches for experimental-theoretical
investigations of the mechanism of transfer of heat and matter.

6



Whereas the thermodynamics of irreversible processes in the investigation
of the phenomenon of transfer of heat and matter makes it possible to use their
phenomenological laws to take into account some experimentally observed qual-
itative patterns of behavior and obtain fundamental results from them, analyt-
ical solutions of the system disclose the quantitative aspect of transfer.

Thus, the analytical methods of the thermodynamics of irreversible proc-
esses, the methods of statistical physics, and mathematical methods for solution
of the boundary value problem for system (14) will mutually supplement one an-
other in the general experimental and theoretical investigation of the mechanism
of transfer of heat and matter. :

-value

A number of new boundary, problems for the system of differential transfer
equations has been solved and published. M. S. Smirnov in references 1 and 2
has presented a method for reducing the boundary-value problem for a system of
differential equations of dessication to the solution of the corresponding
boundary-value problem for a differential equation of the heat conductivity equa-
tion type. This method considerably simplifies the complex solution of the prin-
cipal boundary-value problem and gives some new quantitative relations. In par-
ticular, in reference 1 a formula (20) is proposed which can be used with
simple differentiation for determining the rate of dessication by the rate of
heat transfer.

In rererences 3 and 4 the author solved some boundary-value problems for
system (14) by the method of reducing a system of n differential equations of
the parabolic type to nonhomogeneous equations of the heat conductivity type.
This method in essence is the generalized Delambre method.

Notations

Iy -- flux of the k-th generalized charge; X -- generalized force; Uk -- scalar

potential of the generalized force X;; L;

ik " Onsager phenomenological

coefficients; V -~ elementary volume of the conductor; S -- surface of volume
V or control surface; p' -- an arbitrary point of surface S; E -- quantity of

the generalized charge; vy -- specific weight of the conductor; Cx -- specific

capacitance of the material of the conductiﬁsbody (conductivity) relative to
the k-th generalized charge; aik -~ coefficient of potential conductivity of

the k-th generalized charge; v -- the Hamiltonian.
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